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(a) An image captured with a F/1.8 lens (b) Detail from (a) (c) Detail from (d) (d) A diffusion coded image (deblurred)

Figure 1: Extending depth of field with diffusion coding for a scene consisting of three stuffed animals placed at different depths. (a) An
image captured with a 50mm F/1.8 Canon Lens. The foreground and background objects exhibit severe defocus blur. (d) The diffusion coded
image after deblurring. The image was captured with the diffuser from Section 6 placed in the lens aperture. (b-c) Magnified regions from (a)
and (d) that show that diffusion coding preserves details in foreground and background objects.

Abstract

In recent years, several cameras have been introduced which extend
depth of field (DOF) by producing a depth-invariant point spread
function (PSF). These cameras extend DOF by deblurring a cap-
tured image with a single spatially-invariant PSF. For these cam-
eras, the quality of recovered images depends both on the magni-
tude of the PSF spectrum (MTF) of the camera, and the similarity
between PSFs at different depths. While researchers have com-
pared the MTFs of different extended DOF cameras, relatively lit-
tle attention has been paid to evaluating their depth invariances. In
this paper, we compare the depth invariance of several cameras, and
introduce a new camera that improves in this regard over existing
designs, while still maintaining a good MTF.

Our technique utilizes a novel optical element placed in the pupil
plane of an imaging system. Whereas previous approaches use op-
tical elements characterized by their amplitude or phase profile, our
approach utilizes one whose behavior is characterized by its scat-
tering properties. Such an element is commonly referred to as an
optical diffuser, and thus we refer to our new approach as diffusion
coding. We show that diffusion coding can be analyzed in a simple
and intuitive way by modeling the effect of a diffuser as a kernel in
light field space. We provide detailed analysis of diffusion coded
cameras and show results from an implementation using a custom
designed diffuser.

CR Categories: I.4.3 [Image Processing and Computer Vision]:
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Keywords: computational photography, extended depth of field
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1 Introduction

For conventional cameras, there is a fundamental trade-off between
depth of field (DOF) and noise. Cameras have a single focal plane,
and objects that deviate from this plane are blurred due to defo-
cus (see Figure 1(a)). The amount of defocus blur depends on the
aperture size and the distance from the focal plane. To decrease de-
focus blur and increase DOF, the aperture size must be decreased,
reducing the signal strength of the recorded image as well.

In many cases, it is desirable to have a DOF that is as large as pos-
sible so that all details in the scene are preserved. This is the case,
for instance, in machine vision applications such as object detection
and recognition, where it is desirable that all objects of interest be
in focus. However, stopping down the lens aperture is not always
an option, especially in low light conditions, because it increases
noise and corrupts the signal.

To obtain an extended DOF (EDOF) image without stopping down
the aperture, there are two strategies that can be employed: (1) Mea-
sure the depths of objects in the scene, use this to calculate depth-
dependent PSFs, and apply spatially varying deconvolution to the
captured image. (2) Engineer a PSF that is depth-invariant so that
a single PSF can be used for deblurring. It is well known that high
precision depth estimation is error prone, and difficult (if not im-
possible) without the aid of additional hardware, such as that used
in structured light or laser scanning systems. For this reason, we
focus our attention in this paper on extending DOF by engineering
a depth-invariant PSF.

Typically, when deblurring a noisy image, a larger magnitude in the
PSF spectrum (MTF) will result in less deblurring reconstruction
error. However, this is only the case if the correct PSF is used to
deblur the image. If a different PSF is used for deblurring, it is
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Figure 2: Simulated image performance for three EDOF cameras. An IEEE resolution chart is placed at different depths. The aperture size
A and defocus slope in light field space s0 are chosen so that the maximum defocus blur diameter is 100 pixels. The center PSF is used for
deblurring, producing the images shown in (b). Close-ups in (c) show that the sharpest image is produced by wavefront coding at the center
depth (s0A = 0). However, wavefront coding produces significant deblurring artifacts for defocus values as small as s0A = 33 pixels, while
diffusion coding produces near identical results for the entire depth range.

also important to consider the similarity between the original PSF
and the one used for deblurring. This consideration is of utmost
importance in the context of EDOF cameras because, in practice.
it is only possible to produce a PSF that is approximately depth-
invariant, and the amount of variation determines the severity of the
artifacts that are introduced in the deblurring process.

Two well-studied techniques that produce a depth-invariant PSF are
wavefront coding [Dowski and Cathey 1995], which uses a cu-
bic phase plate, and focal sweep [Nagahara et al. 2008] [Häusler
1972], where object, sensor position, or lens focus setting is me-
chanically varied during exposure. Recently, Baek compared the
degree of depth-invariance of these two techniques, and observed
that focal sweep gives a near-optimal tradeoff between MTF and
depth-invariance at all frequencies [Baek 2010], while wavefront
coding is only guaranteed to be optimal at a single frequency. We
introduce a new diffusion coding camera that produces near iden-
tical performance to focal sweep, but without the need for moving
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Figure 3: The deblurring error (based on simulations in Section 5)
as a function of depth for three EDOF cameras. A flatter curve
denotes less PSF variation. The diffusion coding curves are very
similar to that of focal sweep.

parts (see Figures 1,15-17).

In this work, we focus our attention on the use of optical diffusers
whose behavior is predominately defined by scattering properties
alone. Like phase-plates, these surfaces have the advantage of be-
ing almost completely non-absorptive, and thus do not sacrifice sig-
nal intensity. We coin the term diffusion coding to mean a camera
with a diffuser placed in the pupil plane. Diffusers are commonly
implemented as surfaces with random thickness variations. Such a
surface can either be analyzed as a phase-plate using Fourier optics,
or using geometric optics. This is discussed further in Sections 4
and 6, and in both cases the statistics of the surface variations are
used to calculate the expected distribution of light scattered by the
diffuser. While the former is more common, it also results in much
more complicated analysis. In this paper, we focus on the latter,
which allows us to characterize diffusers as kernels that operate on
a 4D light field propagating from a camera lens to sensor. As a re-
sult, we are able to obtain an analytical solution for the PSF of our
diffusion coded camera, which is given in Section 4.

Levin et al. show that wavefront coding produces better results than
focal sweep if variation in the PSF is not taken into account [Levin
et al. 2009]. As can be seen from Figure 2, wavefront coding re-
covers more detail than other methods for objects at the focal plane
when the correct PSF is used for deblurring. However, the method
also introduces noticeable artifacts for objects at different depths
because the PSF varies significantly with depth. To measure the
degree of depth-invariance of a camera, we compute the deblurring
reconstruction error for objects at different depths. The result is
shown in Figure 3, where a flatter curve signifies more similarity
between PSFs at different depths. We note that the focal sweep
camera produces a PSF that is more depth-invariant than wavefront
coding, and furthermore that our diffusion coded camera produces
near identical results to that of focal sweep. The comparison of
EDOF Cameras is discussed further in Section 5.

We focus our attention on the use of diffusers with predefined
scattering properties, and do not address the task of diffuser de-
sign. Much work has been done in recent years to develop cus-
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Figure 4: The geometry of an image point focused at a distance
d0 from the camera lens aperture. A sensor is located a distance
f from the aperture. A ray at piercing the aperture at location u
intersects the sensor at location x− s0u. where s0 = d0−f

f
.

tom diffusers with tailored scattering profiles. These diffusers
are frequently used in lighting and display applications to pro-
duce uniform illumination or arbitrary beam shaping. The popu-
larity of these diffusers has also led to much innovation in repli-
cation techniques, so that today several companies sell off-the-
shelf diffusers reproduced onto plastic sheets up to 36” wide [Lu-
minit][RPC][Wavefront]. In Section 6, we introduce our implemen-
tation of a diffusion coded camera using a custom diffuser manu-
factured by RPC Photonics [RPC]. We conclude with examples of
EDOF images taken with our implementation in Section 7.

2 Previous Work

Optical diffusers and other random surfaces have been used to assist
in a variety of imaging tasks, including super-resolution [Ashok and
Neifeld 2003][Ashok and Neifeld 2007], lenseless imaging [Free-
man et al. 2006], and extended DOF [Garcı́a-Guerrero et al. 2007].
In this work, we focus on the task of using diffusers to extend DOF.

Several radially symmetric phase masks have been introduced
to extend DOF [Chi and George 2001] [Ojeda-Castaneda et al.
2005][Garcı́a-Guerrero et al. 2007]. The work most similar to ours
is by Garcia-Guerrero et al., who also use a radially symmetric dif-
fuser. To design their diffuser, the authors take a completely differ-
ent approach than the one used in this paper. They derive a random
surface that on average produces a PSF whose value at the center is
constant over a large depth range, while we derive a diffuser whose
entire PSF is approximately depth-invariant. The Garcia-Guerrero
diffuser consists of annular sections of quadratic surfaces, where
the width of the annulus decreases quadratically with distance from
the optical axis. This design requires the feature size to decrease
from the center to the edge of the diffuser. The minimum feature
size is limited by the fabrication technology that is used to make the
diffuser. In this paper we consider the use of laser machining tech-
nology that has a minimum spot size on the order of 10µm. The re-
sult is that the performance of one instance of the Garcia-Guerrero
diffuser varies significantly from the expected performance while
the diffuser we introduce in Section 6 performs very close to the
expected performance (see Figure 12). This difference is discussed
further in Section 6.

Wavefront coding was introduced by Dowski and Cathey [Dowski
and Cathey 1995], who place a cubic phase plate (CPP) in the pupil
plane of a camera system. Dowski et al. show analytically that a
camera with a cubic phase plate produces a PSF that is approxi-
mately invariant to defocus. Although the CPP does produce a PSF
that is approximately depth-invariant, the PSF is not as invariant
as the focal sweep camera or our diffusion coded camera (see Fig-
ures 2 and 3).

Focal sweep cameras produce a depth-invariant PSF by sweeping
either the object [Häusler 1972] or sensor [Nagahara et al. 2008]
along the optical axis during exposure. The PSFs for these tech-
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Figure 5: For the diffuser defined by the kernel in Equation 7,
the diffusion angle does not vary across the aperture. Each ray
is blurred so that it covers an area on the sensor determined by the
the diffuser parameter w.

niques preserves high frequencies because each object is instanta-
neously in focus at one point during exposure. Focal sweep tech-
niques require the use of moving parts and introduce limitations on
the minimum exposure time.

Levin et al. compare the performance of focal sweep and wave-
front coding cameras without considering the effect of depth-
invariance [Levin et al. 2009]. Hasinoff et al. analyzed the SNR
characteristics of both focal sweep and wavefront coding cam-
eras when multiple exposures with different focus settings are
used [Hasinoff et al. 2009], and Baek compared the MTF and depth-
invariance of focal sweep and wavefront coding cameras [Baek
2010].

Other works exist in the vision community which recover an EDOF
image after first estimating scene depth [Levin et al. 2007] [Levin
et al. 2009] [Zhou and Nayar 2009]. The quality of these tech-
niques, however, is closely coupled to the precision of depth estima-
tion, since each region in the image is deblurred using an estimated
defocus PSF.

In this paper, we analyze the light field [Levoy and Hanrahan
1996] to understand the properties of imaging systems. Several
researchers have analyzed the image formation of camera sys-
tems as projections of light fields [Ng 2005][Veeraraghavan et al.
2007][Levin et al. 2009]. In addition, several authors have looked
at light fields in the frequency domain, including image formation
and interactions between transmissive and reflective objects [Ng
2005][Durand et al. 2005][Veeraraghavan et al. 2007].

3 Light Field Analysis

A light field L(ū, x̄) can be used to represent the 4D set of rays
propagating from an ideal lens with effective focal length (EFL) f
to a sensor. The vector ū = (u, v) denotes the coordinates on the
u-v plane, which is coincident with the exit pupil of the lens. The
vector x̄ = (x, y) denotes the coordinates on the x-y plane that
is coincident with the sensor. Note that this is a slightly different
convention than used by Levin et al., where the x-y plane is defined
in object space [Levin et al. 2009]. The irradiance E(x̄) observed
on the sensor is simply the light field integrated over all ray angles:

E(x̄) =

∫
Ωū

L(ū, x̄)dū, (1)

where, Ωū is the domain of ū. For a scene with smooth depth
variation, locally, the captured image E(x̄) can be modeled as a
convolution between a depth-dependent PSF kernel P (x̄) and an
all-in-focus image I(x̄). The goal of this paper is to shape the cam-
era PSF so that the entire image I(x̄) can be recovered from the
captured image E(x̄) by deblurring with a single PSF P (x̄). We
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Figure 6: The geometry of a radially symmetric light field using re-
duced coordinates. The light field consists of a point source focused
a distance d0 from the lens aperture. Because the point source is
on-axis and isotropic, the light field can be represented as a 2D
function L(ρ, r). A 2D slice of the light field L(ρ, r) represents
the set of rays traveling from a circle with radius ρ in the aperture
plane to a circle with radius r on the sensor. This set of rays forms
a conic surface.

analyze the depth-dependence of the camera PSF by considering
the image produced by a unit energy point source. Consider a point
source whose image comes to focus at a distance d0 from the aper-
ture of the lens (see Figure 4). Assuming a rectangular aperture of
width A, the light field produced by this point is

Lδ(ū, x̄) =
1

A2
u
( ū
A

)
δ(x̄− s0ū), (2)

where s0 = d0−f
d

is the defocus slope in light field space, and u is
the box function

u
( x̄
w

)
=

 1 if |x̄i| < w
2
, ∀i

0 otherwise
. (3)

The image of this point is the camera PSF at the depth d0, which is
the familiar box shaped PSF with defocus blur width s0A:

P (x) =
1

s2
0A

2
u
(

x̄

s0A

)
. (4)

We now analyze the effect of a general kernel D applied to a light
field L, which represents the effect of a diffuser placed in the aper-
ture of a camera lens. The kernel produces a new filtered light field
L̂, from which we can derive the modified PSF P̂ :

L̂(ū, x̄) =

∫
Ωū′

∫
Ωx̄′

D(ū, ū′, x̄, x̄′)L(ū′, x̄′)dū′dx̄′, (5)

P̂ (x̄) =

∫
Ωū

L̂(ū, x̄)dū, (6)

where Ωx̄ is the domain of x̄. This approach allows us to express
a large class of operations applied to a light field. For instance,
consider a kernel of the form

D(ū, ū′, x̄, x̄′) =
1

w2
δ(ū− ū′) u

(
x̄− x̄′

w

)
. (7)

u

v
Sensor SensorAperture

Figure 7: The geometry of a radially symmetric diffuser. The dif-
fuser scatters light only in the radial direction, and has no effect in
the tangential direction. A thin annulus of light is emitted from the
aperture of width dρ and radius ρ. In the absence of the diffuser,
the emitted light projects to an annulus on the sensor of width dr
and radius r. When the diffuser is present, the width of the annulus
on the sensor becomes w, the diffuser scatter width.

Note that here D takes the form of a separable convolution kernel
with finite support in the x̄ domain. The geometric meaning of this
kernel is illustrated in Figure 5. Each ray in the light field is blurred
so that, instead of piercing the sensor at a single location, it con-
tributes to a square of width w. In order to understand the effect of
the diffuser, we compare an image E captured without the diffuser
to an image Ê captured with it. For this diffuser kernel, substitut-
ing Equation 7 into Equations 5 and 6 gives (see Supplementary
Material for a detailed derivation):

P̂ (x̄) =
1

w2
u
( x̄
w

)
⊗ P (x̄), (8)

where⊗ denotes convolution. The modified PSF is simply the cam-
era PSF blurred with a box function. Therefore, the effect of the dif-
fuser is to blur the image that would be captured were it not present.
Introducing the diffuser given by the kernel in Equation 7 is clearly
not useful for extending depth of field since it it does not increase
depth independence or preserve high frequencies in the camera PSF.
We note that, in general, the kernel for any diffuser that is placed in
the aperture takes the form

D(ū, ū′, x̄, x̄′) = δ(ū− ū′)f(ū, x̄− x̄′), (9)

where f is called the scatter function. That is, the diffuser has no
effect in the ū domain, but has the effect of a convolution in the x̄
domain. For the diffuser given by Equation 7, the scatter function
is the 2D box function f(ū, x̄) = 1

w2 u
(
x̄
w

)
.

4 Radially Symmetric Light Fields

We now change from rectangular coordinates (u, v, x, y) to polar
coordinates (ρ, φ, r, θ) using the relations u = ρcosφ, v = ρsinφ,
x = rcosθ, and y = rsinθ. We consider a polar system where
ρ, r ∈ (−∞,∞) and θ, φ ∈ (0, π) and a circular aperture with
diameter A. The light field representing a unit-energy point source
located at distance d0 in this new system can be written as

Lδ(ρ, r) =
4

πA2
u
( ρ
A

) δ(r − s0ρ)

π|r| , (10)

which is independent of both θ and φ because the source is
isotropic. Note that verifying unit-energy can be carried out triv-
ially by integrating Lδ(ρ, r) in polar coordinates (see Supplemen-
tary Material). Comparing the parameterizations for the light field

31:4       •       O. Cossairt et al.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 31, Publication date: July 2010.



of a point source in Equations 2 and 10, we can see that a slice of
Lδ(x̄, ū) represents a single ray, while a slice L(ρ, r) represents a
2D set of rays. In the radially symmetric parameterization, a slice
of the light field represents a conic surface connecting a circle with
radius ρ in the aperture plane to a circle of radius r on the sensor
(see Figure 6).

We now consider the effect of a radially symmetric diffuser on the
camera PSF. Somewhat surprisingly, a diffuser that is parameter-
ized in these reduced 2D coordinates produces a drastically differ-
ent effect than the diffuser given by Equation 7. When a radially
symmetric diffuser is introduced, neither the diffuser nor the lens
deflects rays tangentially, and therefore we can represent the dif-
fuser kernel and modified light field using the reduced coordinates
(ρ, r). Equations 5 and 6 then become

L̂(ρ, r) = π2

∫
Ωρ

∫
Ωr

D(ρ, ρ′, r, r′)L(ρ′, r)|ρ′|dρ′|r′|dr′, (11)

E(r) = π

∫
Ωρ

L̂(ρ, r)|ρ|dρ, (12)

and the general form of the diffuser kernel becomes

D(ρ, ρ′, r, r′) =
δ(ρ− ρ′)
π|ρ′|

f(r − r′, ρ)

π|r| . (13)

We use the same box-shaped scattering function as we did for the
diffuser kernel in Equation 7:

f(r, ρ) =
1

w
u (

r

w
). (14)

However, the physical interpretation of this diffuser is drastically
different than for the previous diffuser. For the previous one, each
ray in the light field is scattered so that it spreads across a square
on the sensor. The effect of the scattering function in Equation 14
is illustrated in Figure 7. In the absence of the diffuser, light from
an annulus of width dρ and radius ρ in the aperture plane projects
to an annulus of width dr and radius r on the sensor. The effect
of the scatter function in Equation 14 is to spread the light incident
on the sensor so that it produces an annulus of width w instead.
We can also consider the scattering from the perspective of a sin-
gle ray, as illustrated by the pink and red volumes in Figure 7. In
polar coordinates, a ray is a small annular section that travels from
the aperture plane to the sensor plane, illustrated by the red volume
in Figure 7. The pink volume illustrates the effect of the diffuser,
which is to scatter a ray along a radial line of width w. We note
that a box-shaped scatter function is used here for notational conve-
nience, but we found that a Gaussian scattering function is superior
for extended DOF imaging (see Figure 11(d)).

The light field of a point source filtered by this diffuser kernel and
PSF can be shown to be (see Supplementary Material for a complete
derivation)

L̂(ρ, r) =
4

πA2
u
( ρ
A

) u( r−s0ρ
w

)

πw|r| , (15)

P̂ (r) =
4

πs2
0A

2

1

w|r|

[
u
( r
w

)
⊗
(
u
(

r

s0A

)
· |r|
)]

. (16)

The analytic solution for the PSF is a piecewise function due to the
contribution from the term in brackets, which is a convolution be-
tween the two rect functions (one weighted by |r|). Note that as the
scattering width w is reduced to zero, the first rect (combined with
1
w

) approaches a delta function and the result is the familiar pillbox
shaped defocus PSF. Also note that if a different scattering function
is used, the first rect is simply replaced with the new function. How-
ever, the convolution term is far less significant than the 1

|r| term,
whose effect dominates, resulting in a PSF which is strongly depth-
independent while still maintaining a strong peak and preserving
high frequencies.

The solution for the PSF may be interpreted in the following way.
Please refer to Figure 7. Suppose we have a pillbox defocus PSF,
and we want to know how a small annular region of width δr and
radius r will be affected by the diffuser. Light incident on this re-
gion emanates from an annulus in the aperture, and its energy will
be proportional to ρ or equivalently r/s0. This explains the pres-
ence of the |r| multiplier within the term in brackets. The term in
brackets states that the energy in the PSF annulus is spread uni-
formly along radial lines of width w, as shown on the right hand
side of Figure 7. The 1

|r| term in Equation 16 can be attributed
to the fact that the energy density becomes larger for light that is
scattered closer to the center of the PSF.

Figure 9 shows several PSF/MTF pairs for a camera with and with-
out the diffuser given by Equation 16. The defocus blur diameter
s0A varies from 0 to 100 pixels. The scatter function of Equa-
tion 14 is a Gaussian instead of a box function, and the diffuser
parameter w (the variance of the gaussian) is chosen so that w =
100 pixels. Note that when the diffuser is present, there is little
variation with depth for either the PSF or MTF. Introducing the dif-
fuser also eliminates the zero crossings in the MTF. For smaller de-
focus values, the diffuser suppresses high frequencies in the MTF.
However, because the diffuser MTF does not vary significantly with
depth, high frequencies can be recovered via deconvolution. Fig-
ure 8 shows a simulated light field filtered by the radially symmet-
ric diffuser given by Equation 14. On the far right of the figure, we
show a high contrast, extended depth of field image that is recov-
ered after deconvolution is applied.
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Figure 9: PSF plots (top) and MTF (bottom) plots for a camera
with (red) and without (green) the diffuser kernel defined in Equa-
tion 14. The defocus blur diameter s0A is varied across columns
from 0 to 100 pixels, and the diffuser parameter w = 100 pixels.
Both the PSF and MTF exhibit negligible variation when the dif-
fuser is present.
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w = 0 pix w = 10 pix w = 20 pix w = 20 pix w = 30 pix (deblurred)

Figure 8: Simulated photographs taken of of a light field filtered by the diffuser kernel in Equation 14. The parameter w of the diffuser kernel
is varied across the columns. The rightmost figure shows a deblurred diffusion coded image with a 10× increase in DOF.

5 Comparison between EDOF Cameras

All EDOF cameras sacrifice MTF response at high frequencies in
order to achieve depth-invariance. High frequencies in captured im-
ages are recovered via deconvolution, but this process also ampli-
fies sensor noise which degrades the recovered image. In addition,
any variation in the PSF/MTF as a function of depth will result in
deblurring artifacts due to a mismatch between the actual PSF and
the PSF used for deblurring. The quality of an edof camera can be
represented by the deblurring reconstruction error R, which takes
into account the camera MTF, the degree of depth-invariance of the
PSF/MTF, and sensor noise. To calculate the deblurring error R we
compute the L2 norm on the difference between the ground truth
(focused) image and the captured image deblurred by a PSF Pd.
The captured image is the ground truth image I blurred by a PSF
Pb plus noise η.

R =
∣∣∣∣(I ⊗ Pb + η)⊗ P−1

d − I
∣∣∣∣2 . (17)

This measure takes into account the camera MTF, since it includes
the term η ⊗ P−1

d , which represents the amplification of sensor
noise due to small MTF values. In addition, the measure takes into
account the degree of depth-invariance of the camera PSF/MTF be-
cause it includes the term I−(I⊗Pb)⊗P−1

d , which is the difference
between a ground truth image and the same image blurred by one
PSF and then deblurred by another.

To evaluate the performance of an EDOF camera, we calculate the
deblurring error over a range of depths. If an EDOF camera per-
forms well, it will have a small deblurring error over all depths. For
each camera, we calculated the camera PSF at a variety of discrete
depths and used this as the blurring PSF Pb. For the deblurring PSF
Pd, we used the camera PSF at the center of the depth range. In
all simulations, η was set to be Gaussian white noise with variance
σ = .005. Since the deblurring error can vary with I , we compute
the value over a variety of natural images and take the average. In
Figure 3, we show the deblurring error for three EDOF methods.
Wavefront coding achieves the minimum deblurring error for all
cameras when the defocus blur diameter s0A = 0 pixels. This is be-
cause the wavefront coding MTF is greater and therefore preserves
more information when deblurred with the correct PSF. However,
both diffusion coding and focus sweep produce a flatter curve that
results in less deblurring error at all other depth locations.

To demonstrate the performance of our EDOF method, we simu-
lated a scene consisting of an IEEE resolution chart. Simulated de-
focused images are shown in Figure 2(a), where the maximum defo-
cus blur diameter is s0A = 100 pixels. We apply Wiener deconvo-
lution with the PSF at the center depth to obtain the EDOF images
shown in (b). Close-ups of the deblurring results are shown in (c).
As expected, the sharpest image is produced by wavefront coding
for the center depth. However, wavefront coding produces signifi-
cant deblurring artifacts for defocus values as small as s0A = 33

pixels, while diffusion coding produces near identical results for the
entire depth range.

To generate the PSFs for Figures 2 and 3, we used the analytical
solution for the diffusion coding PSF from Equation 16. For the
focal sweep camera, we numerically integrated a sequence of defo-
cus discs which, for the center PSF, represents a range of defocus
blur diameters from 0 to 120 pixels. We performed a numerical
search to find the focal sweep range that produces a local minimum
in average deblurring error for this simulation. We used the raytrac-
ing engine in Zemax to numerically compute the wavefront coding
PSFs without the effect of diffraction. To generate the Zemax ray-
trace, a cubic refractive surface was used such that the light field
integration curve takes the form (x = au2, y = av2). The optimal
value for awas chosen to be a = S/(2A) [Levin et al. 2009], where
S is the maximum value of the defocus parameter s0. Furthermore,
we performed a numerical search to verify that this a produces a
local minimum in average deblurring error for this simulation.

6 Implementing the Diffuser

We consider diffusers of the “kinoform” type [Caulfield 1971],
where the scattering effect is caused entirely by roughness varia-
tions across a surface. Such a diffuser can be considered a random
phase screen, and according to statistical optics, for a camera with
effective focal length f , and center wavelength λ̄, the effect of plac-
ing this screen in the aperture of the camera results in the following
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Sensor

x

f

phase plate

PSF

x

(a) A wedge with thickness t(u) = aλ̄u

Lens

u

Sensor

x

f

phase plate

PSF

x

(b) A randomly varying surface

Figure 10: A wedge can be thought of as a having a slope drawn
from a probability density function which is a delta function. A
diffuser can be thought of as a phase plate with a randomly varying
thickness with a slope that is drawn from a more general probability
density function.

31:6       •       O. Cossairt et al.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 31, Publication date: July 2010.



(a) Diffuser profile (b) Diffuser height map

−0.75 −0.5 −0.25 0 0.25 0.5 0.75

(c) Diffuser scatter PDF (d) The diffuser

Figure 11: An implementation of the diffuser defined by the kernel
in Equation 14. (a), (b), and (c) show the radial profile, height-map,
and radial scatter function of the diffuser surface, respectively. (d)
shows the fabricated diffuser.

PSF [Goodman 1985]:

P̂ (x, y) ∝ pφu,φv (
x

λ̄f
,
y

λ̄f
), (18)

where φu and φv are the u and v derivatives of the phase shift in-
duced by the surface, and pφx,φy is the joint probability of these
derivatives. The result of Equation 18 is that we can implement
a diffuser simply by creating an optical element with thickness
t(u, v), where the gradient of this surface5t(u, v) is sampled from
a probability distribution which is also our desired PSF. Intuitively,
we can understand this equation as follows: pφu,φv denotes the
fraction of the surface t(u, v) with slope (φu, φv). For small an-
gles, all incoming rays incident on this fraction of the surface will
be deflected at the same angle, since the slope is constant over this
region. Thus the quantity pφu,φv also reflects the portion of light
that will be deflected by the slope (φx, φy).

In fact, kinoform diffusers can be thought of as generalized phase
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Deblurring Error at Different Depths
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Figure 12: The deblurring error as a function of depth for both
diffusion coding and the Garcia-Guerrero diffuser. The dotted lines
show the deblurring error for a single instance of the diffuser sur-
face. The solid lines show the deblurring error averaged over 100
realizations of the diffuser surfaces. A single instance of the diffu-
sion coding surface performs significantly better than the Garcia-
Guerrero diffuser.

plates, as shown in Figure 10. In Figure 10(a), a wedge with thick-
ness t(u) = aλ̄u is placed in the aperture of a lens system. The
effect of the wedge is to shift the PSF away from the optical axis.
The wedge can be thought of as a having a slope drawn from a
probability function p(φu) which is a delta function. The result of
placing a wedge in the pupil plane of a camera is to shift the PSF,
which can be thought of as convolving p(φu) with the PSF. A kino-
form diffuser has a randomly varying surface with a more general
probability distribution of slopes (Figure 10(b)).

To implement the diffuser defined in Equation 14, we follow the
procedure in [Sales 2003], which simply implements a diffuser
surface as a sequence of quadratic elements whose diameter and
sag is drawn from a random distribution. The scatter function is de-
signed to be roughly Gaussian with 0.5mm variance (corresponding
to w = 1mm in Equation 16) as shown in Figure 11(c). To create
a radially symmetric diffuser, we create a 1D random profile and
then apply a polar transformation to create the final 2D surface (see
Figures 11(a) and 11(b)). The maximum height of the surface is
3µm. The diffuser was fabricated using a laser machining tech-
nology which has a minimum spot size of about 10µm. To ensure
that each quadratic element was fabricated with high accuracy, the
minimum diameter of a single element was chosen to be 200µm,
resulting in a diffuser with 42 different annular sections. The dif-
fuser used in all our experiments (see Figures 1,15-17) is shown in
Figure 11(d), and was fabricated by RPC Photonics [RPC].

To compare the performance of our diffuser surface relative to the
analytic PSF from Equation 16 derived using light field analysis,
we calculated PSFs for the diffuser surface using wave optics, and
used them to create a deblurring error curve. The resulting curve is
shown as the dotted red line in Figure 12, and it is very close to the
light field curve shown in solid red.

We also used wave optics to compare the deblurring error for
our diffuser and the diffuser proposed by Garcia-Guerrero et
al. [Garcı́a-Guerrero et al. 2007]. For a fair comparison, we also
restricted the feature size of the Garcia-Guerrero diffuser to be
200µm. Since this design requires features to reduce in size from
the center to the edge of the diffuser, only 21 annular sections could
be made to fit within a 22mm aperture. The results are shown in
Figure 12. The solid red and green lines show the deblurring errors
for the diffusion coding and Garcia-Guerrero diffuser, respectively,
for PSFs that are averaged over 100 surface realizations. The two
curves are very similar, however, a single realization of the diffu-
sion coding surface performs much closer to the average, as seen
from the dotted red and green lines. In short, given the imposed
fabrication limitations, diffusion coding significantly outperforms
the Garcia-Guerrero diffuser.

7 Experimental Results

Figure 13 shows the PSFs produced when using the diffuser shown
in Figure 11(d). The PSFs closely resemble the shape predicted by
Equation 16 as is evident from the depth-invariance shown in the
figure. The PSFs are normalized to unit intensity by color chan-
nel. The defocus range is chosen so that the normal lens PSF blur
diameter ranges between 0 and 1 mm.

Figure 15 shows two images taken with a normal lens (Figure 15(a)
taken with f/4.5 and Figure 15(b) taken with f/29) and two images
(Figure 15(c) before deblurring, and Figure 15(d) after deblurring)
taken with the diffuser from Section 6. All images are taken with a
50ms exposure time and the brightness in the f/29 image is normal-
ized. The example shows that diffusion coding does indeed give
far superior results in comparison to stopping down a lens. The de-
blurred image in Figure 15(d) extends depth of field by roughly a
factor of six.

Diffusion Coded Photography for Extended Depth of Field       •       31:7

ACM Transactions on Graphics, Vol. 29, No. 4, Article 31, Publication date: July 2010.



1.00 m 1.28 m 1.80 m0.82 m0.70 m

N
or

m
al

C
am

er
a

D
iff

us
io

n
C

od
in

g

Figure 13: Measured PSFs for a 50mm f/1.8 lens without (top) and
with diffusion coding (bottom). Almost no variation is visible in the
diffusion coding PSF.

Figures 1 and 14-17 compare images taken with a normal lens to
diffusion coded images taken with the diffuser from Section 6. The
depth range of each scene is chosen so that the normal lens PSF
blur diameter ranges between 0 and 1 mm. Within each figure,
all images have the same exposure time and aperture setting. In
each figure, three images are taken with the normal lens focusing
on the background, middle, and foreground. These three images
are then compared to the diffusion coded image(s). In all examples,
the deblurred diffusion coded images exhibit a significant increase
in DOF. Please see the Supplementary Material for additional dif-
fusion coding examples.

All images were captured with a Canon 450D sensor. To cap-
ture diffusion coded images, the 22mm diameter diffuser from Fig-
ure 11(d) was inserted into the aperture of a 50mm f/1.8 Canon lens.
Deblurring of all diffusion coded images was performed using the
BM3D deblurring algorithm [Dabov et al. 2008]. The BM3D de-
blurring algorithm enforces a piecewise smoothness prior that sup-
presses the noise amplified by the deblurring process. Note that, as
discussed in Section 5, all EDOF cameras amplify noise in the de-
blurring process, and the amount of amplification can be measured
by the deblurring error. The result of using the BM3D algorithm is
that while our deblurred images do not look noisy in comparison to
images captured without the diffuser, some of the fine details in the
deblurred images are not preserved.

8 Conclusions and Future Work

We have introduced a new method for extending the DOF of a cam-
era system. We first formulated diffusion as a kernel applied to
a light field. We then used this notation to guide the design of a
depth-invariant diffuser. We showed that a radially symmetric dif-
fuser produces a PSF which achieves a similar performance to a
focal sweep camera, but without the need for mechanical motion.
We fabricated a diffuser and verified that it functions as predicted
by our theoretical analysis. We showed through examples the effec-
tiveness of our diffusion coding technique in extending DOF. Our
examples demonstrated a significant extension of DOF.

While the diffuser design in this paper achieves a similar perfor-
mance to focal sweep, it remains an open question whether or not
the design is optimal. An interesting direction for future work is to
determine how to simultaneously maximize depth-invariance in the
PSF while also maximizing MTF. Diffusion coding may prove to be
a useful tool for implementing cameras that satisfy this optimality
criterion.

9 Acknowledgements

This research was supported in part by the Office of Naval Re-
search through the awards N00014-08-1-0329 and N00014-09-1-
0638. Oliver Cossairt is supported by a National Science Founda-
tion Graduate Research Fellowship.

(a) Normal camera at three focus settings

(b) Diffusion coded camera

Figure 14: Extending DOF with diffusion coding. All images were
taken with a 16ms exposure time. (a) The top, middle, and bottom
images were captured using a a 50mm f/1.8 Canon lens focused on
the background, middle, and foreground, respectively. The depth of
field is too narrow for all objects to be in focus simultaneously. (b)
The diffuser from Section 6 is inserted into the lens aperture and
deblurring is applied to recover the EDOF image in (b). Diffusion
coding results in a roughly 10× increase in DOF.
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(a) Normal camera (f/4.5)

(b) Normal camera (f/29) (d) Diffusion coded camera (deblurred)

(c) Diffusion coded camera (captured)

(e) Close-ups

Figure 15: Noise comparison between a diffusion coded camera and a normal camera. All images were taken with a 20ms exposure time.
(a) Image taken with a f/4.5 camera. The DOF is too narrow for all objects to be in focus. (b) Image taken with the lens stopped down to f/29.
All the objects are in focus but the noise is significantly increased. (c) Image taken with the same settings as in (a), but with the diffuser from
Section 6 inserted into the lens aperture. All objects are in focus, but the image exhibits a slight haze. (d) Image obtained by deblurring the
one in (c). The image preserves similar detail as in (b), but with significantly less noise. (e) Close-ups of the images in (a),(b), and (d).
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(a) Normal camera (b) Diffusion coded camera
focus at background focus on foregroundfocus on middle captured recovered

Figure 16: Images of a scene consisting of several vases at different depths shot with a 50mm f/1.8 Canon lens. All images were taken with a
12ms exposure time. (a) Images focused on the background, middle, and foreground from left to right. (b) Images captured using the diffuser
from Section 6. The right column shows the result after deblurring. Close-ups at the bottom show that the recovered image significantly
increases DOF.

(a) Normal camera (b) Diffusion coded camera

(c) Close-ups from (a) (d) Close-ups from (b)
(Focused on background) (Focused on foreground) (Recovered)

Focused on
background

Focused on 
middle

Focused on 
foreground

Captured Recovered

Figure 17: Images of a scene consisting of two statues at different depths shot with a 50mm f/1.8 Canon lens. All images were taken with
a 10ms exposure time. (a) Images are focused on the background, middle, and foreground from left to right. (b) Images captured using the
diffuser from Section 6. The right image shows the result after deblurring. Close-ups at the bottom show that the recovered image significantly
increases DOF.
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